Positive Schemes and Shock Modelling for Compressible Flows

نویسنده

  • ANTONY JAMESON
چکیده

A unified theory of non-oscillatory finite volume schemes for both structured and unstructured meshes is developed in two parts. In the first part, a theory of local extremum diminishing (LED) and essentially local extremum diminishing (ELED) schemes is developed for scalar conservation laws. This leads to symmetric and upstream limited positive (SLIP and USLIP) schemes which can be formulated on either structured or unstructured meshes. The second part examines the application of similar ideas to the treatment of systems of conservation laws. An analysis of discrete shock structure leads to conditions on the numerical flux such that stationary discrete shocks can contain a single interior point. The simplest formulation which meets these conditions is a convective upwind and split pressure (CUSP) scheme, in which the coefficient of the pressure differences is fully determined by the coefficient of convective diffusion. Numerical results are presmted which confirm the properties of these schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting

Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...

متن کامل

Flux-Limited Schemes for the Compressible Navier-Stokes Equations

Several high-resolution schemes are formulated with the goal of improving the accuracy of solutions to the full compressible Navier-Stokes equations. Calculations of laminar boundary layers at subsonic, transonic, and supersonic speeds are carried out to validate the proposed schemes. It is concluded that these schemes, which were originally tailored for nonoscillatory shock capturing, yield ac...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Random sampling remap for compressible two-phase flows

In this paper we address the problem of solving accurately gas-liquid compressible flows without pressure oscillations at the gas-liquid interface. We introduce a new Lagrange-projection scheme based on a random sampling technique introduced by Chalons and Goatin in [CG07]. We compare it to a ghost fluid approach introduced in [WLK06, MBKKH09] which is based on the ghost fluid method for the po...

متن کامل

A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows

This paper presents a hybrid finite-difference/weighted essentially non-oscillatory (WENO) method for large-eddy simulation of compressible flows with low-numerical dissipation schemes and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described, encompassing the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995